
A Second-Order Cell-Centered Diffusion Difference Scheme
for Unstructured Hexahedral Lagrangian Meshes (U)

Michael L. Hall and Jim E. Morel

Group CIC-19, Radiation Transport Team

Los Alamos National Laboratory

Email: hall@lanl.gov

A discretization method for the diffusion equation in 3-D has been developed. The method
is valid for unstructured meshes with cell-centered data. The homogeneous solution of the
diffusion equation, which is linear, is preserved exactly. The method is second order accurate
and conserves energy locally. Material discontinuities are handled rigorously. In the case of
an orthogonal mesh, the method reduces to the standard seven-point operator. The discretiza-
tion scheme results in an unsymmetric matrix with a size of roughly four times the number
of cells. This matrix system can be solved using any sparse unsymmetric matrix solver. (U)

Introduction

The accurate solution of the diffusion equation

is important for many varied applications. For in-

stance, diffusion equations occur in the modeling of

heat conduction, in certain formulations of fluid flow,

and in radiation transport. Within the discipline of

radiation transport, diffusion equations are used in

single-group P1 and Simplified Spherical Harmonics

(SPN) calculations, and in Diffusion Synthetic Accel-

eration (DSA) of transport iterations.

The mesh on which a diffusion problem is to be

solved is often dictated by other problem constraints,

such as the need to perform a Lagrangian hydrody-

namics calculation in conjunction with a diffusion cal-

culation. A mesh type which seems to be gaining

prominence in three-dimensional modeling is the un-

structured hexahedral mesh. This mesh consists of

hexahedra and degenerate hexahedra (prisms, pyra-

mids, tetrahedra, see Figure 1) that are connected in

an arbitrary fashion. The connectivity of such a mesh

must be explicitly specified. The additional compli-

cation of an unstructured mesh is balanced by the

freedom to model arbitrary geometries, such as block

structured meshes, and to model curved geometries

Figure 1: Cell types handled by the model in 3-D:

hexahedron, prism, pyramid and tetrahedron.

with fewer distorted cells.

This paper develops a numerical method for mod-

eling diffusion on unstructured hexahedral meshes.

The method is an extension of the method de-

scribed in an earlier paper by the authors (Morel,

J. E. Dendy, Hall and White, 1992). The method

in the previous paper was specifically for 2-D struc-

tured (i.e. logically rectangular) meshes. The deriva-

tion given here is applicable to 1-D, 2-D, and 3-D

unstructured meshes.

Method Overview

The equation to be solved is given by

α
∂Φ

∂t
−

−→

∇ ·D
−→

∇ Φ + σΦ = S −
−→

∇ ·
−→

J , (1)

which can be written

α
∂Φ

∂t
+

−→

∇ ·
−→

F + σΦ = S (2)

−→

F = −D
−→

∇ Φ +
−→

J , (3)

where

Φ = Intensity

−→

F = Flux

D = Diffusion Coefficient

α = Time Derivative Coefficient

σ = Removal Coefficient

S = Intensity Source Term

−→

J = Flux Source Term.

1

������
���������

������
���
������
���

������
���������

������
���������

		
	

������
���������

�

�

�

������
���

Figure 2: Location of the unknowns on the hexahe-

dron: one at the cell center and one on each cell face.

Everything in this equation is assumed to be known,

with the exception of Φ and
−→

F at the new time step.

This equation has an extra term from the standard

diffusion equation, the
−→

∇ ·
−→

J term, which allows it

to model the P1 and SPN equations.

The new method shares these properties with the

method described in Morel et al. (1992):

• It is cell-centered (balance equations are done

over a cell).

• The method has cell-centered and face-centered

unknowns, which are required to rigorously treat

material discontinuities (see Figure 2).

• Homogeneous solutions (in this case, linear solu-

tions) are preserved exactly.

• It is second-order accurate.

• The method reduces to the standard cell-

centered operator (seven-point for 3-D, five-point

for 2-D, three-point for 1-D) for an orthogonal

mesh.

• Local energy conservation is maintained.

• Unfortunately, the method results in an unsym-

metric matrix system.

In addition, the new method handles unstructured

meshes and is multi-dimensional. The geometries

that can be handled by the new method are listed

in Table 1.

Table 1: The geometries that can be handled by the

new method, all of which have an unstructured (ar-

bitrarily connected) format.

Dimension Geometries Type of Elements

1-D spherical,

cylindrical

or cartesian

line segments

2-D cylindrical

or cartesian

quadrilaterals or

triangles

3-D cartesian hexahedra or de-

generate hexahedra

(tetrahedra, prisms,

pyramids)

Method Derivation

Conservation Equation

The first step in the derivation of the method is

the discretization of the conservation equation, Equa-

tion 2. Integrating the conservation equation over the

cell volume gives
∫

Vc

α
∂Φ

∂t
dV +

∫

Vc

−→

∇ ·
−→

F dV (4)

+

∫

Vc

σΦ dV =

∫

Vc

S dV .

Defining cell averages and applying Gauss’ Theorem

gives

αc

∂Φc

∂t
Vc +

∫

A

−→

F ·
−→

dA + σcΦcVc = ScVc . (5)

Discretizing temporally and evaluating the flux inte-

gral gives

αcVc

∆t

(

Φn+1
c − Φn

c

)

+
∑

f

−→

Fn+1

f ·
−→

Af (6)

+ σcΦ
n+1
c Vc = ScVc ,

where the sum over f represents the sum over the face

values, the subscript c represents a cell-centered or

cell-average value and the unsuperscripted variables

are evaluated at n + 1

2
. Note that all of the geome-

tries in Table 1 can be represented by this equation

when the proper definitions for areas, volumes, and

face sums are substituted. Note that this scheme is

not limited to fully implicit differencing; for instance,

a Crank-Nicholson differencing scheme may be em-

ployed.

2

Flux Terms

All of the terms in Equation 6 are evaluated in

terms of known quantities, or in terms of the un-

known Φ, except for the flux term. To effect closure,

the flux vector across each face of the cell,
−→

Fn+1

f , must

be expressed in terms of Φn+1.

Evaluating the flux equation, Equation 3, at a

particular face gives

−→

Fn+1

f = −Dc,f

−→

∇ Φn+1 +
−→

Jf . (7)

The flux source,
−→

Jf , is known. The diffusion co-

efficient, Dc,f , is known within a cell, but may be

discontinuous at the cell face. In general, one can-

not evaluate a gradient by taking differences across a

material interface because the gradient is discontinu-

ous along the interface. It is often assumed that one

can take differences across a material discontinuity if

one uses a proper average of the two diffusion coeffi-

cients on each side of the discontinuity. However, it

will be shown that this is possible only on orthogonal

meshes. To avoid taking differences across material

discontinuities, an intensity unknown is added to each

cell face. The interface flux is then evaluated using

two independent differences, with each difference be-

ing constructed solely from unknowns from a single

cell. An equation for each interface intensity is ob-

tained by requiring these independent differences to

yield the same flux.

Actual expressions for the gradient in non-

orthogonal coordinate systems will now be consid-

ered. The values of Φ at four non-planar points are

necessary and sufficient to determine the gradient.

Since the mesh is unstructured, a unique coordinate

system will be defined for each cell. Any four non-

planar points (
−→

P1 ,
−→

P2 ,
−→

P3 ,
−→

P4) define a local coordi-

nate system (see Figure 3) in terms of three vectors,

k̂ ≡
−→

P2 −
−→

P1 ,

l̂ ≡
−→

P3 −
−→

P1 , (8)

m̂ ≡
−→

P4 −
−→

P1 .

The coordinates of the four points in (k, l,m)-space

are defined to be
−→

P1 ≡ (0, 0, 0)T ,
−→

P2 ≡ (1, 0, 0)T ,

1

2

3

k

l

4P

P

P

P

m

Figure 3: Coordinate system defined by four non-

planar points.

−→

P3 ≡ (0, 1, 0)T , and
−→

P4 ≡ (0, 0, 1)T . A Jacobian ma-

trix converts between the (k, l,m) coordinate system

and the (x, y, z) coordinate system:












P x

P y

P z













−













P x
1

P y
1

P z
1













=













∂x
∂k

∂x
∂l

∂x
∂m

∂y
∂k

∂y
∂l

∂y
∂m

∂z
∂k

∂z
∂l

∂z
∂m

























Pk

P l

Pm













.

(9)

which is represented as:

−→

P −
−→

P 1 = J
−→

P . (10)

Note that an equally valid inverse transformation

from the (x, y, z) coordinate system to the (k, l,m)

coordinate system could have been used, with a Ja-

cobian matrix equal to J−1. However, since the four

points are located along the axes in (k, l,m)-space,

but not in (x, y, z)-space, it is easier to take the

derivatives needed for the forward Jacobian than the

reverse Jacobian:

J =

[(

−→

P2 −
−→

P1

) (

−→

P3 −
−→

P1

) (

−→

P4 −
−→

P1

)]

=
[

k̂ l̂ m̂
]

. (11)

Returning to the consideration of the gradient

term and expanding the k, l and m derivatives of Φ

using the chain rule yields












∂Φ

∂k

∂Φ

∂l

∂Φ

∂m













=













∂x
∂k

∂y
∂k

∂z
∂k

∂x
∂l

∂y
∂l

∂z
∂l

∂x
∂m

∂y
∂m

∂z
∂m

























∂Φ

∂x

∂Φ

∂y

∂Φ

∂z













3

������
���
������
���

������
���
��
�

��
�
��
�

��
�
��
�

��
�
��
�

��
���

��
�
��
�

J

J
J

l

m

k

Figure 4: Coordinate system defined by three inter-

secting lines.

= JT
−→

∇ Φ , (12)

or, solving for
−→

∇ Φ and inserting the derivative defi-

nitions,

−→

∇ Φ = J−T













∂Φ

∂k

∂Φ

∂l

∂Φ

∂m













≈ J−T













Φ2 − Φ1

Φ3 − Φ1

Φ4 − Φ1













. (13)

This method of representing gradients is exact

for linear functions, but only approximate for higher

order functions.

Four points are not the only way to determine

a gradient, for instance, six points that form three

lines intersecting in a single point can also be used.

A six points gradient is actually used to determine the

fluxes on the faces of the cell. If a point (and therefore

an unknown Φ) is placed in the center of each face, the

three lines formed by connecting opposing faces all

intersect at the cell center. A single Jacobian matrix

per cell is then sufficient to determine the necessary

gradients.

If the vectors connecting the face centers of op-

posite faces are denoted
−→

Jk ,
−→

Jl , and
−→

Jm for the k,

l, and m directions (see Figure 4), then the Jacobian

matrix is given by

J =

[

−→

Jk

−→

Jl

−→

Jm

]

, (14)

and the inverse transpose matrix is

J−T = (15)

1

|J|

[(

−→

Jl ×
−→

Jm

) (

−→

Jm ×
−→

Jk

) (

−→

Jk ×
−→

Jl

)]

.

The values for the k, l and m derivatives of Φ

have yet to be defined. These are defined in terms of

the seven unknown Φ’s in each cell. If the origin is

placed at the center of the cell, then the locations of

the unknown Φ’s in (k, l,m)-space are

Φc ⇒ (0, 0, 0) ,

Φ+k ⇒ (
1

2
, 0, 0) ,

Φ−k ⇒ (−
1

2
, 0, 0) ,

Φ+l ⇒ (0,
1

2
, 0) , (16)

Φ−l ⇒ (0,−
1

2
, 0) ,

Φ+m ⇒ (0, 0,
1

2
) , and

Φ−m ⇒ (0, 0,−
1

2
) ,

where the faces are denoted +k, −k, +l, −l, +m and

−m. Along any particular direction there are three

ways to determine a derivative. For example, in the

k direction, the k derivative of Φ can be determined

via

∂Φ

∂k
=

Φ+k − Φ−k

1

2
−
(

− 1

2

) = Φ+k − Φ−k ,

∂Φ

∂k
=

Φ+k − Φc

1

2
− 0

= 2 (Φ+k − Φc) , or (17)

∂Φ

∂k
=

Φc − Φ−k

0 −
(

− 1

2

) = 2 (Φc − Φ−k) .

The first definition uses a full-cell difference, whereas

the second and third definitions use a half-cell differ-

ence. Each of these definitions will be used depending

on which direction and which face is being considered.

The gradient must be determined for each face of

the cell. Each face must have definitions for all of the

k, l and m derivatives. For a given face, the direction

which is perpendicular to the face is called the major

direction, because it is the only direction for which

the derivative is non-zero if the cell is orthogonal, and

it is usually the main contributor to the flux across

the face. The other directions are called the minor

directions for that face.

4

������
���
������
���

 !!""

"
##
#

$$
$
%%
%

&�&&�&
&�&
''
'

((
(
))
) **

*
++
+Φ +k

+l

+m

-m
-l

-k

c

Φ

Φ
Φ

Φ

Φ

Φ

Figure 5: Stencil for the +k face gradient, shown with

a dotted blue line.

To compute the gradient for a face, full-cell

derivatives are used for the minor directions. The

half-cell derivative which involves the face in ques-

tion is used for the major direction. For example, for

the +k face the major direction is the k direction,

and the minor directions are the l and m directions.

The gradient for the +k face is represented by the

cell value for the J−T matrix multiplied by the k, l

and m derivative vector for that face:

−→

Fn+1

+k = −Dc,+k J−T
c













2
(

Φn+1

+k − Φn+1
c

)

Φn+1

+l − Φn+1

−l

Φn+1
+m − Φn+1

−m













+
−→

Jc,+k

(18)

Figure 5 shows the stencil for each face gradient that

is given by this method. This completes the dis-

cretization of the conservation equation, Equation 2.

When all of the face gradients have been defined and

substituted in, the conservation equation has terms

for all of the seven unknowns within the cell and has

no terms involving any unknowns that are not within

the cell.

Cell Face Equations

After discretizing the conservation equation,

there is an equation for every cell in the problem,

but roughly three extra unknowns per cell have been

added. Closure is achieved by applying a continuity

,,-
-

../
/

001
1

223
3

454454656656

778
8

959959:
:

;5;;5;<5<<5<

=5==5=>5>>5>

??@
@

AAB
B C5CC5CD

D E5EE5EF5FF5F

Figure 6: Stencil for the face equation, shown with a

dotted blue line.

of flux condition at each cell face:

−
−→

Fn+1

c1,f ·
−→

Ac1,f −
−→

Fn+1

c2,f ·
−→

Ac2,f = 0 (19)

where c1 and c2 are the two cells that share the face

f . If, for example, face f is a −m face in c1 and is a

+k face in c2, this equation can be written out as

Dc1,−m J−T
c1













Φn+1

+k − Φn+1

−k

Φn+1

+l − Φn+1

−l

2
(

Φn+1
c1 − Φn+1

−m

)













·
−→

Ac1,−m

+ Dc2,+k J−T
c2













2
(

Φn+1

+k − Φn+1
c2

)

Φn+1

+l − Φn+1

−l

Φn+1
+m − Φn+1

−m













·
−→

Ac2,+k (20)

−
−→

Jc1,−m ·
−→

Ac1,−m −
−→

Jc2,+k ·
−→

Ac2,+k = 0 .

The 11-point stencil for the cell face equations is

shown in Figure 6.

Boundary Conditions

Because the conservation equation only involves

variables within a cell, the boundary conditions only

affect the cell face equations. On the boundaries, in-

stead of a cell face equation, a Robin boundary con-

dition is specified,

β1 Φn+1

f − β2

−→

Fn+1

c,f ·
−→

Ac,f = β3 Φbc , (21)

where β1, β2 and β3 can be specified to match the

following common boundary conditions:

5

• homogeneous: Φn+1

f = 0,

• reflective: −
−→

Fn+1

c,f · n̂c,f = 0,

• vacuum: 1

2
Φn+1

f −
−→

Fn+1

c,f · n̂c,f = 0,

• Dirichlet: Φn+1

f = Φbc,

• Neumann: −
−→

Fn+1

c,f · n̂c,f = −Φbc , or

• source boundary conditions:

1

2
Φn+1

f −
−→

Fn+1

c,f · n̂c,f = 1

2
Φbc.

Orthogonal Reduction

In the case of an orthogonal mesh, the face area

vector for each face is parallel with the major direc-

tion for that face, and perpendicular to the minor

directions for that face. The dot product of the flux

vector with the area vector for a given face is there-

fore only related to the flux in the major direction

and not the minor directions.

There is no loss of generality in assuming that the

k, l, and m directions are aligned with the x, y, and

z directions. With this assumption, the J−T matrix

reduces to the following:

J−T =
1

Jx
k Jy

l Jz
m





Jy
l Jz

m 0 0

0 Jx
k Jz

m 0

0 0 Jx
k Jy

l



 . (22)

The flux-area dot product for each face then be-

comes directly proportional to the difference in inten-

sity values between the face and the cell center. For

example, the flux dot product for the +k face in the

case of an orthogonal mesh is given by1

−→

Fn+1

c1,+k ·
−→

Ac1,+k (23)

= −Dc1,+k J−T
c1













∂Φ

∂k

∂Φ

∂l

∂Φ

∂m













·













Ax
+k

0

0













1The standard seven-point diffusion operator does not ac-

count for a flux source term,
−→

J , so that is omitted from the

current discussion.

= −
Dc1,+k

Jx
k Jy

l Jz
m













2Jy
l Jz

m

(

Φn+1

+k − Φn+1
c1

)

Jx
k Jz

m

(

Φn+1

+l − Φn+1

−l

)

Jx
k Jy

l

(

Φn+1
+m − Φn+1

−m

)













·













Ax
+k

0

0













= −
Dc1,+kAx

c1,+k

Jx
c1,k/2

(

Φn+1

+k − Φn+1
c1

)

.

Similarly, for the −k face of cell c2,

−→

Fn+1

c2,−k ·
−→

Ac2,−k = −
Dc2,−kAx

c2,−k

Jx
c2,k/2

(

Φn+1
c2 − Φn+1

−k

)

.

(24)

If cell c1 and cell c2 share the +k/−k face, then

these two equations may be substituted into the cell

face equation, Equation 19. Noting that
−→

Ac2,−k =

−
−→

Ac1,−k,

Dc1,+k

Jx
c1,k/2

(

Φn+1

+k − Φn+1
c1

)

=
Dc2,−k

Jx
c2,k/2

(

Φn+1
c2 − Φn+1

+k

)

.

(25)

This equation can be solved for Φn+1

+k and then substi-

tuted back into Equation 23 to yield an equation for

the flux which only involves the cell center unknowns:

−→

Fn+1

c1,+k ·
−→

Ac1,+k = (26)

−Ax
c1,+k

[

Jx
c1,k/2

Dc1,+k

+
Jx

c2,k/2

Dc2,−k

]−1
(

Φn+1
c2 − Φn+1

c1

)

.

This equation shows that the effective diffusion coef-

ficient on an orthogonal mesh is

Deff,f =

[

∆xc1

Dc1,f

+
∆xc2

Dc2,f

]−1

(∆xc1 + ∆xc2) , (27)

where Jx
k has been denoted with the more familiar

form of ∆x. The flux expression then becomes

−→

Fn+1

c1,+k ·
−→

Ac1,+k = (28)

−Ax
c1,+k

Deff,f

∆xc1 + ∆xc2

(

Φn+1
c2 − Φn+1

c1

)

,

which agrees exactly with the standard seven-point

diffusion operator. It is only possible to reduce the

flux expression to the cell center variables, using an

effective diffusion coefficient to represent the material

discontinuity, if the mesh is orthogonal. Otherwise,

the gradients on each side of the interface must be

represented separately, and the equation set cannot

be reduced to a cell center difference using local op-

erations.

6

Algebraic Solution

The discretization scheme results in an algebraic

system with (4nc + nb/2) unknowns, where nc is the

number of cells in the problems and nb is the number

of boundary faces.2 This is roughly four times the

number of unknowns that a method like the stan-

dard seven-point orthogonal operator produces, but

the new method cannot be expressed in terms of only

the cell center variables without obtaining a dense

diffusion matrix. There are no methods which use

only cell center unknowns that are second-order ac-

curate on skewed meshes. The matrix system for

this method is unsymmetric, which necessitates an

unsymmetric solver. There is a maximum of 11 non-

zero elements in any row, due to the cell face equation

stencil.

When a Krylov subspace solver is used, a spe-

cialized preconditioning system has been developed

to speed convergence. The preconditioner consists of

a low-order version of the new method itself, which

is derived by setting the minor direction terms for

each face to zero (see section entitled “Flux Terms”).

This results in a matrix which can be reduced to a

system involving the cell center unknowns only. In

addition to having four times fewer unknowns, this

system has a maximum of seven non-zero elements

per row and is symmetric. After solution with a sym-

metric solver (which tends to be faster than an un-

symmetric solver), the face unknowns are obtained

via back-substitution.

The Krylov subspace solvers used for the solu-

tion of the main system are GMRES and TFQMR,

among others. The low-order preconditioning sys-

tem is solved using the Conjugate Gradients method,

which is in turn preconditioned using SSOR. Alter-

nately, an incomplete direct method called the un-

structured multi-frontal method may be used. This

solver gives very exact answers rapidly for small sys-

tems, but ultimately loses with the respect to the

Krylov solvers when large time-dependent problems

with loose tolerances are solved.

2In general, for multiple dimensions the scheme has

((nd + 1) nc + nb/2) unknowns, where nd is the number of di-

mensions.

Implementation:

The Augustus Code Package

The method outlined in this paper has been

implemented into a code package called Augus-

tus. It is currently written in Fortran-77, but

it will be re-written in Fortran-90 in the future.

Current platforms (Operating Systems) include Sun

(SunOS and Solaris), SGI (IRIX), HP (HP-UX), and

IBM (AIX). On-line documentation can be found at

http://www.lanl.gov/Augustus.

The Augustus code package is a true multi-

dimensional package that can model all of the ge-

ometries described in Table 1. The package has been

installed into the ALEGRA (SNLA) hydrodynamics

code (Summers et al., 1996; Budge et al., 1994; Robin-

son et al., 1996), and the Telluride (LANL) low-

speed flow code (Kothe et al., 1997; Reddy et al.,

1997). Augustus is also used as the diffusion ker-

nel for the Spartan SPN radiation transport code,

developed by the authors.

The Augustus code package uses two algebraic

solver packages. The main package, used for Krylov

subspace methods, is JTpack, developed by John

Turner at LANL (Turner, 1997). The auxiliary pack-

age, used for the unstructured multi-frontal method,

is UMFPACK (Davis and Duff, 1995).

The Augustus code package has been com-

pleted, and there is active development of new fea-

tures. The package may be obtained by contacting

the authors.

Results

Second-Order Demonstration

In order to demonstrate that the method is

second-order accurate, a problem with an analytic

quartic3 solution is solved. The problem which is

chosen is described in detail in Morel et al. (1992).

The problem domain is a cube, with a random mesh

obtained by moving (in 3-D) the interior points of an

orthogonal mesh by a random fraction of 20% of the

inter-nodal distance, in a random direction. There

are reflective boundaries on four sides, and vacuum

boundaries on two opposite sides. The properties

3The method is exact for linear solutions, so no improve-

ment is achieved by refining the mesh in that situation.

7

Table 2: Results from the Second-Order Accuracy

Test.

New Method

Problem Size (cells)
‖Φexact−Φ‖

2

‖Φexact‖2

Error Ratio

5 × 5 × 5 1.0248×10−2

10 × 10 × 10 2.6190×10−3 3.91

20 × 20 × 20 6.6082×10−4 3.96

40 × 40 × 40 1.6530×10−4 4.00

Orthogonal Seven-Point Solution

Problem Size (cells)
‖Φexact−Φ‖

2

‖Φexact‖2

Error Ratio

5 × 5 × 5 1.0202×10−2

10 × 10 × 10 2.6205×10−3 3.92

20 × 20 × 20 6.5952×10−4 3.97

40 × 40 × 40 1.6515×10−4 3.99

are constant spatially and temporally, and there is

a spatially-varying source which is proportional to x2

in each cell. With these conditions, the steady-state

analytic answer is a quartic of the form Φ (x, y, z) =

a + bx + cx4.

The results from running this problem for differ-

ent mesh sizes are given in Table 2. It can be seen

that the error is reduced by a factor of four each time

the mesh spacing is reduced by a factor of two, which

indicates a second-order accurate method. The re-

sults from the orthogonal seven-point operator (on

an orthogonal mesh) show similar behavior.

Homogeneous Solution Problem

The method will exactly preserve the homoge-

neous solution to the diffusion equation, which is a

linear solution, even if the mesh is highly skewed. To

show this, a problem with a linear solution has been

solved. The problem domain is a cube, with reflec-

tive boundaries on four sides and source and vacuum

boundary conditions on opposite sides. The physical

properties are constant spatially and temporally, and

Actual Mesh Dual Mesh

(Cell Nodes) (Cell Centers)

Figure 7: Differences between the actual mesh and

the dual mesh that is used by the plotting package,

shown on one face of the cube.

there are no removal or source terms. The steady-

state analytic solution is linear in one dimension.

The mesh for this problem is 20×20×20, which

results in 8000 nodes, 6859 cells, and 28519 un-

knowns. The mesh spacing is one that has been de-

veloped by the authors and is termed a “3-D Ker-

shaw” mesh. The basis of this mesh is a 2-D mesh

that was described in Kershaw (1981), which had con-

stant spacing in one dimension and varied spacing in

the second dimension. The 3-D Kershaw mesh has

constant spacing in one dimension and varied spac-

ing in the second and third dimensions, which creates

a mesh that is very skewed in 3-D.

Figures 8, 9, and 10 were made using GMV, a

program written by Frank Ortega at LANL (Ortega,

1995). Unfortunately, this program is best suited for

node-centered data, rather than cell-centered data.

This problem was partially circumvented by treating

the cell centers as node centers in a dual mesh (see

Figure 7). Due to the skewed nature of the mesh, the

cell centers are not flush with the edges of the cube

and give the illusion of a wavy cube boundary, which

is not the case.

Before running the 3-D Kershaw mesh problem,

the same problem was run on an orthogonal mesh.

A contour plot of the steady-state results is shown

in Figure 8. The analytical solution is linear in x,

and the method reproduces this exactly, as is seen

from the straight contour lines. This was expected

because the method reduces to the standard seven-

point operator in the case of an orthogonal mesh.

Figure 9 shows a contour plot of the steady-state

results for the 3-D Kershaw mesh. The contour lines

8

Figure 8: Contour plot of the steady-state solution

to the homogeneous problem on an orthogonal mesh.

remain linear, even though the mesh is highly skewed.

A random cutplane through the cube (see Figure 10)

shows that the contour lines are linear on the interior

of the cube and highlights the skewed nature of the

mesh. Indeed, calculations exhibit linearity of the

solution down to machine precision.

Summary

A discretization method for the diffusion equa-

tion in 3-D has been developed. The method is

valid for unstructured meshes with cell-centered data.

The homogeneous solution of the diffusion equation,

which is linear, is preserved exactly. The method is

second order accurate and conserves energy locally.

Material discontinuities are handled rigorously. In

the case of an orthogonal mesh, the method reduces

to the standard seven-point operator.

The discretization scheme results in an unsym-

metric matrix with a size of roughly four times the

number of cells. This matrix system can be solved

using any sparse unsymmetric matrix solver.

A code package named Augustus has been de-

veloped to implement the method. This package

models all of the geometries listed in Table 1. The

matrix is solved using either Krylov subspace meth-

ods or an unstructured multi-frontal method.

Figure 9: Contour plot of the steady-state solution to

the homogeneous problem on a 3-D Kershaw mesh.

Figure 10: Contour plot on a random cutplane of the

steady-state solution to the homogeneous problem on

a 3-D Kershaw mesh.

9

Future and Concurrent Work

The authors have also developed the Spartan

code package, which models the SPN radiation trans-

port equations using the Augustus code package as

a diffusion kernel. It also models all of the geometries

listed in Table 1.

A symmetric diffusion discretization method

based on Morel et al. (1992) has been developed, but

unfortunately it is only applicable to 2-D cartesian ge-

ometries. A support operator diffusion discretization

method has also been developed. This method gives

a symmetric matrix and looks promising for multiple

geometries.

References

Budge, K. G., J. S. Peery, M. K. Wong and T. G. Tru-

cano (1994), RAYHYD: An ICF Target Simulation

Code Written in C++ (U), in “Proceedings of the Nu-

clear Explosive Code Developers Conference”, October

1994. Online information on ALEGRA is available at

http://sherpa.sandia.gov/9231home/alegra/.

Davis, Timothy A. and Iain S. Duff (1995), “A Com-

bined Unifrontal/Multifrontal Method for Unsymmet-

ric Sparse Matrices”, submitted to ACM Transac-

tions on Mathematical Software, 1995. TR-95-020.

Online information on UMFPACK is available at

http://www.cis.ufl.edu/~davis/.

Kershaw, David S. (1981), “Differencing of the Diffusion Equa-

tion in Lagrangian Hydrodynamic Codes”, Journal of

Computational Physics 39:375–395, 1981.

Kothe, D. B., R. C. Ferrell, J. A. Turner and S. J. Mosso

(1997), A High Resolution Finite Volume Method for Ef-

ficient Parallel Simulation of Casting Processes on Un-

structured Meshes, in “Proceedings of the 8th SIAM

Conference on Parallel Processing for Scientific Comput-

ing”, Minneapolis, MN, March 14–17 1997. LA-UR-

97-30. Online information on Telluride is available at

http://www.lanl.gov/telluride/.

Morel, J. E., Jr. J. E. Dendy, Michael L. Hall and Stephen W.

White (1992), “A Cell-Centered Lagrangian-Mesh Dif-

fusion Differencing Scheme”, Journal of Computational

Physics 103(2):286–299, December 1992. LA-UR–90-

3582.

Ortega, Frank A. (1995), General Mesh Viewer

(GMV) User’s Manual, Technical Report LA-

UR-95-2986, Los Alamos National Laboratory.

Online information on GMV is available at

http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html.

Reddy, A. V., D. B. Kothe, C. Beckermann, R. C. Fer-

rell and K. L. Lam (1997), High Resolution Finite Vol-

ume Parallel Simulations of Mold Filling and Binary

Alloy Solidification on Unstructured 3-D Meshes, in

“Proceedings of SP97: The Fourth Decennial Interna-

tional Conference on Solidification Processing”, The Uni-

versity of Sheffield, UK, July 7–10 1997. LA-UR-97-

136. Online information on Telluride is available at

http://www.lanl.gov/telluride/.

Robinson, A. C., A. V. Farnsworth, S. T. Montgomery,

J. S. Peery and K. O. Merewether (1996), Neutron

Generator Power Supply Modeling in EMMA, in “Pro-

ceedings of the Ninth Nuclear Explosives Code De-

veloper’s Conference”, San Diego, CA, October 22–25

1996. Online information on ALEGRA is available at

http://sherpa.sandia.gov/9231home/alegra/.

Summers, R. M., J. S. Peery, M. W. Wong, E. S. Hertel, T. G.

Trucano and L. C. Chhabildas (1996), “Recent Progress

in ALEGRA Development and Application to Ballistic

Impacts”, to be published in International Journal of Im-

pact Engineering 20, 1996. Presented at the 1996 Hy-

pervelocity Impact Symposium, Freiburg, Germany, Oct.

7–10, 1996. Online information on ALEGRA is available

at http://sherpa.sandia.gov/9231home/alegra/.

Turner, John A. (1997), JTpack User’s Manual, Technical

Report LA-UR-97-2, Los Alamos National Labo-

ratory. Online information on JTpack is available at

http://www.turner-family.com/John/LANL/JTpack.html.

10

